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Abstract 
 
The purpose of this paper is to demonstrate that alternative solutions to current methods 
exist for network storage. We would like to introduce one such alternative, a new 
protocol that we call HyperSCSI. This protocol is used for the transmission of Small 
Computer Systems Interface (SCSI) family of protocols across a network and multi-
technology device support. In this paper, we will outline some of the key features and 
basic technical details of HyperSCSI. We have also developed several fully functioning 
disk array prototypes using a variety of hardware and storage devices as well as 
conducted benchmarks and performance tests on this. A performance comparison 
between this new protocol and iSCSI and NFS is also included here.  
 
1. The Problem 
 
Research has been ongoing for ways to transport data over networks for storage 
applications for quite some years. While we pursued efforts in developing network 
storage technologies, we came across the following issues and concerns. 
 
• High cost of Fibre Channel SANs – Implementing and managing FC-based SANs is 

quite expensive. Even if hardware costs were to come down (and we expect them to 
do so), ultimately the “hidden” costs of systems, infrastructure, manpower and 
software implementation and maintenance is still very high. 

• TCP/IP SAN performance is still not good enough without hardware acceleration – 
TCP/IP is inherently slow compared to FC-based storage technologies. Special 
hardware for TCP/IP represents higher costs and a more difficult upgrade path for 
users. 

• FC-based SANs cannot do Storage Wide-Area Networks – FC is an inherently local 
communications technology, and if one needs to go wide-area, the best method is to 
use the ever present IP due to its wide-spread availability. Ongoing efforts such as 
FCIP, iFCP and iSCSI are in line with this idea. 

• Interoperability is weak at times – Vendors are also often stuck on the interoperability 
of various storage products and systems. The fundamental issue is that vendors need 
to differentiate their solutions in order to compete. However, this often results in 
interoperability issues or worse, vendor lock-in for customers. 
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• Security is lacking – Normal TCP/IP and Fibre Channel do not provide serious 
security for data transport. FC does have LUN Masking, but this is mostly a function 
of the FC switch, not the storage device itself. IPsec does provide security to IP-based 
applications, but adds yet another layer of complexity to an already difficult solution. 

• Inability of existing storage technologies to apply to new areas – Existing network 
storage methods do not take non-traditional applications and areas into account. An 
example of this is in home and personal network storage and using simple infra-red, 
Bluetooth or wireless LAN for small data access or transport. 

• Difficulties in scaling – Existing systems scale upwards through new higher 
bandwidth standards. This is often slow due to the standards process. Furthermore, 
the scaling of capacity is difficult due to the continuous need to build and implement 
larger and larger disk systems that are generally not modular enough. 

 
Based on this background, we set about designing, developing and testing a new network 
storage protocol that we hope will address these and other network storage issues. We 
would like to present some of the results from our research and development efforts that 
began in June 2000 in this paper. 
 
2. Existing Solutions 
 
Recent efforts in network storage have expanded to include development of alternatives 
to pure Fibre Channel as the primary method for network storage. These efforts include 
iSCSI, FCIP, SST and many others. Below are descriptions of a few of these efforts.  
 
2.1. Fibre Channel over TCP/IP (FCIP) 
Fibre Channel Over TCP/IP (FCIP) describes mechanisms that allow the interconnection 
of islands of Fibre Channel storage area networks over IP-based networks to form a 
unified storage area network in a single Fibre Channel fabric. FCIP relies on IP-based 
network services to provide the connectivity between the storage area network islands 
over local area networks, metropolitan area networks, or wide area networks [1]. What 
this means is that FCIP is designed to encapsulate Fibre Channel over a TCP/IP-based 
network for the purposes of connecting dispersed FC-based SANs. 
 
2.2. iSCSI 
The iSCSI Internet Draft describes a transport protocol for SCSI that operates on top of 
TCP [2]. iSCSI enables the use of SCSI devices over a TCP/IP-based infrastructure. 
Other areas considered include Naming and Discovery, Boot and Security. It is important 
to note that iSCSI is the only protocol currently in the process of standardisation that 
allows for the construction of native end-to-end Ethernet SANs [3]. 
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2.3. Internet Fibre Channel (iFCP) 
iFCP specifies an architecture and gateway-to-gateway protocol for the implementation 
of Fibre Channel fabric functionality on a network in which TCP/IP switching and 
routing elements replace Fibre Channel components. The protocol enables the attachment 
of existing Fibre Channel storage products to an IP network by supporting the fabric 
services required by such devices [4]. The purpose here seems quite clear, that is to 
implement Fibre Channel fabric architectures over a TCP/IP-based network, thus 
allowing FC devices to connect and run FC natively over a TCP/IP-based infrastructure. 
 
2.4. Metro FCP (mFCP) 
mFCP is a UDP-based implementation of the iFCP over metro- and local-scale IP 
networks. These networks are provisioned to have latency, reliability, and performance 
levels comparable to that of a Fibre Channel network. Storage devices use the Fibre 
Channel SCSI mapping in FCP for data transport and error recovery. mFCP leverages 
these existing mechanisms to facilitate high-performance interconnection of Fibre 
Channel- based storage devices over suitably provisioned IP networks. As in the case of 
iFCP, Fibre Channel frames may be transported natively over such a network without 
Fibre Channel switching and routing elements [5]. 
 
2.5. Internet Storage Name Service (iSNS) 
iSNS provides a generic framework for the discovery and management of iSCSI and 
Fibre Channel (FCP) storage devices in an enterprise-scale IP storage network. iSNS is 
an application that stores iSCSI and FC device attributes and monitors their availability 
and reachability in an integrated IP storage network. Due to its role as a consolidated 
information repository, iSNS provides for more efficient and scalable management of 
storage devices in an IP network [6]. iSNS is meant to be used with iSCSI, FCIP, iFCP 
and such protocols for the hosts or servers to locate and use storage devices over a large 
network infrastructure such as the Internet. 
 
2.6. SCSI on Scheduled Transfer Protocol (SST) 
The SCSI on STP standard defines a transport protocol within the SCSI family of 
standards. The physical interconnects to which the SST protocol may attach are not 
defined within this standard, but rather, are any interconnects or other protocols on which 
the basic ST protocol may operate [7]. SST defines a mapping to carry SCSI traffic on 
top of an STP-based infrastructure. 
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2.7. Basic Technologies 
The above technologies are built on top of a basic set of storage technologies. There are 
two such basic command sets today, ATA/IDE and SCSI. Based on these two command 
sets, other derivative technologies have been developed. See Table 1 for a pictorial 
representation of these technologies. 
 
Base Command Set ATA/IDE SCSI 

Derivative / 
New Developments 

ATA 133 
Serial ATA 

SCSI-320 
Universal Serial Bus 
IEEE 1394 “FireWire” 
Fibre Channel 
SSA 

Network Storage  
Developments  

iSCSI 
iFCP 
FCIP 
SST 

Table 1: Storage Technologies 
At this point, we turn our attention to our development efforts of the HyperSCSI protocol. 
Further in this paper, we will present a few ideas for thought regarding HyperSCSI and 
various other technologies. 
 
3. The Approach 
 
The first thing we decided on was to standardise on using the Small Computer Systems 
Interface (SCSI). It is the predominant mechanism for various storage and even non-
storage devices. The question then turned quickly to how we could make SCSI “network-
enabled”. This gave rise to our idea of “HyperSCSI”. 
 
We found that the requirements of local network storage (SAN) and wide-area network 
storage (SWAN) are quite different. As such, we provided the capability to spilt 
HyperSCSI protocol into multiple modes of operation. Two such modes are currently 
being developed, one for local access, Local HyperSCSI over Ethernet (HS/eth), and the 
other for wide-area connectivity, Wide-Area HyperSCSI over IP (HS/IP). The basic 
protocol structure is essentially the same, thus allowing devices to speak local or wide-
area storage seamlessly. This has allowed us to adopt IP-based networking technologies 
for wide-area applications where it is needed but bypassing IP entirely and putting the 
protocol directly onto Ethernet itself for optimum local area communications. This model 
also allows us to eventually develop HyperSCSI for other technologies, such as 
Asynchronous Transfer Mode (ATM) for high speed Telco / ISP environments and 
Wireless LAN for home or personal network storage. 
 
Furthermore, since we are designing a low-level protocol, some of the intelligence or 
command and control functions can be passed on to higher layers or the clients to adapt 
and handle. This allows us to design a protocol that is lightweight and efficient, while 
leveraging the intelligence and capabilities of both the storage system and host machine 
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to mutual benefit. For example, we allow device, security and compression options as 
well as storage virtualisation technologies to be implemented on either the storage 
system, host machine or both as the needs arise. In addition, packetisation and 
virtualisation options of HyperSCSI allow us to implement N-channel communications 
technologies in order to use “scale-out” methods of bandwidth and capacity increases 
with fault tolerance and reliability. Figure 1 shows a Local HyperSCSI packet on 
Ethernet (HS/eth). A wide-area HyperSCSI (HS/IP) packet is essentially the same, but 
built on IP instead of directly on the Ethernet.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: HyperSCSI Packet 
 
Finally, more advanced functions and capabilities were built into the HyperSCSI protocol 
to support other requirements like dynamic management, dynamic flow control and in-
band management capabilities. Manufacturers, system integrators and technology 
companies are not left out in the cold either. To enable the protocol to be interoperable, 
and yet be able to support vendor-specific or implementation-specific functions, a special 
set of dynamically negotiated device options has been designed into the protocol. These 
options can be negotiated at connect time and depending on the configuration of the 
clients and servers, be enforced, supported or ignored. Thus, HyperSCSI can provide a 
minimum level of connectivity for interoperability operations and while supporting 
advanced vendor-specific or implementation-specific functions. Our initial encryption 
methods demonstrate this function in action. Other possible device specific options 
include read-only access, removable media locking and data compression. 
 
 
 
 
 
 
 
 
 
 
 
 
 

DA            SA Ethernet EtherType HyperSCSI PDU CRC 

HS Header HyperSCSI Data

Ethernet
Frame

HyperSCSI
Packet

6-byte 6-byte 2-byte ≤ 1500-byte 4-byte 

4-byte ≤ 1496-byte
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4. HyperSCSI Operation 
 
The HyperSCSI protocol comprises of various packet structures. These structures are 
categorised by classes and then by specific types. Packets of a specific class and type may 
also have more than one function depending on the context of the communication. These 
packets are responsible for transmitting the SCSI data and commands as well as 
managing the connection and communication channel. Table 2 illustrates some of the 
packets in the HyperSCSI protocol. 
 
HyperSCSI Packet Description 

HyperSCSI Command Block Encapsulation Class 
HCBE_REQUEST HyperSCSI command block encapsulation request 
HCBE_REPLY HyperSCSI command block encapsulation reply 

HyperSCSI Connection Control Class 
HCC_DEVICE_DISCOV
ERY 

Client issues this packet to discover storage devices on the 
network 

HCC_ADN_REQUEST Authentication challenge and device operation negotiation 
request 

HCC_ADN_REPLY Authentication and device operation negotiation reply 
HCC_DISCONNECT  Termination of HyperSCSI connection 

HyperSCSI Flow Control Class 
FC_ACK_SNR Flow control set-up and acknowledgement request 
FC_ACK_REPLY Acknowledge reply 

Table 2: HyperSCSI Operations 
 
5. Typical HyperSCSI Connection Flow Sequence 
 
Figure 2 illustrates a typical sequence of the communication stages between a client and 
server using the HyperSCSI protocol. The various stages of the connection flow sequence 
are described below. 
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Figure 2: Typical HyperSCSI Connection Flow Sequence 
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5.1. Connection Setup 
The HyperSCSI connection setup is a three-step handshaking procedure between a 
HyperSCSI client and server pair. Typically, in a storage network, the host machine 
(HyperSCSI client) is responsible for locating and initiating connections to storage 
devices (HyperSCSI servers). During this process, the HyperSCSI client issues a 
HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices on 
the network. For IP-based situations, neither broadcast nor multicast methods are used. 
Instead, a client must specify an IP address (or DNS name) and a 
HCC_DEVICE_DISCOVERY packet is sent over IP directly to the server. Further 
information about device discovery is covered in section 6.2. Once the HyperSCSI server 
receives this packet, it checks the client address for authentication purposes and transmits 
the HCC_ADN_REQUEST packet back to the HyperSCSI client. In order for the 
HyperSCSI client to establish a connection with the HyperSCSI server, it must then send 
the correct response through a HCC_ADN_REPLY command and add the ID numbers of 
the devices that it has access to into its own registry. If the server successfully 
authenticates the HCC_ADN_REPLY, the connection is accepted and the HyperSCSI 
client can now send commands to the server. Within the HCC_ADN request and reply 
method, authentication challenges, encryption key exchanges, device specific option 
negotiations and other information supporting N-channel communications such as 
server/client IDs and network addresses are also provided and exchanged.  
 
5.2. Flow Control and ACK Window Size Setup 
An ACK mechanism has been adopted to support flow control of data between an 
HyperSCSI client and server pair. The ACK window size refers to the number of packets 
that the transmitter may continuously send before waiting for an acknowledgement. This 
window size must be negotiated and agreed upon before data flow can take place and is 
set by the requestor through an FC_ACK_SNR command. This packet is issued as a 
separate message and typically, the server will be the one to issue this command so that 
the server has the ability to balance loads or priorities across multiple clients, although 
this does not mean that the client may not issue one either. Once the FC_ACK_SNR has 
been received, the new status will be acknowledged to the requestor with an 
FC_ACK_REPLY. If the requestor receives the acknowledgement, it assumed that the 
window size is accepted and packet transmission using the new window size can begin. 
The ACK window size can be set based on traffic loads, or buffer capacities and can be 
set at start-up or changed dynamically during run time. This allows for different window 
sizes to be dynamically set by clients and servers to fit changing performance, reliability 
or QoS requirements. For example, under bad network environments, windows sizes can 
be reduced, while under optimum situations, window sizes can be increased for better 
performance. However, we are still studying algorithms for the detection of network 
congestion and updating of the window size during run time. The basic protocol supports 
this capability and we will include this portion when it is complete. Transmission 
windows used here are neither fixed nor sliding in nature, but rather utilises a moving 
window scheme similar to credit-based schemes used in Fibre Channel, but measured in 
windows rather than individual packets. In addition, the FC_ACK_REPLY is also used to 
acknowledge the correct reception of a window to the requestor and synchronises the data 
flow between an HyperSCSI client and server pair. In this case, it functions as an 
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indicator of the receiver status for normal HyperSCSI data transmission. If the transmitter 
does not receive the correct FC_ACK_REPLY packet within a timeout period, it will re-
transmit all the packets in the window in question again. Another retransmission scheme 
supported is by using the FC_ACK_SNR to query the receiver’s status. The transmitter 
can then use the FC_ACK_REPLY results to re-calculate the next packet to be 
transmitted. With these two schemes, re-transmits can be conducted selectively or by 
ACK windows, thus giving users a high level of flexibility in controlling the flow of data 
and commands. 
 
5.3. HyperSCSI Data Transmission 
When there is a SCSI request from the local OS SCSI upper layer of the host machine, 
the HyperSCSI client software is responsible for converting the OS-specific SCSI 
command block together with any relevant data (as in a write command) into a platform 
independent HyperSCSI Command Block (HCB). The client then encapsulates and 
fragments the HCB into one or more HCBE_REQUEST packets that it sends to the 
HyperSCSI server. SCSI command blocks and user data will therefore be transmitted 
together in the same packet. The HyperSCSI server receives the data stream, re-
assembles the HyperSCSI command block and relevant user data, converts it back to an 
OS-specific SCSI command block and passes it to the relevant hardware for execution. 
When the result of this SCSI request is ready, the HyperSCSI server will send the result 
together with the requested data back to HyperSCSI client by issuing the HCBE_REPLY 
packet stream in a similar manner as the request. The HyperSCSI client reassembles the 
HyperSCSI command block and converts it back to a OS-specific SCSI command block 
before passing it on to the local OS SCSI upper layer. During this transmission, flow 
control mechanisms are in effect through the use of FC_ACK_REPLY commands as 
described in section 5.2. 
 
5.4. Dynamic Management 
During a HyperSCSI connection, the HyperSCSI server will regularly (timer-based) issue 
a HCC_ADN_REQUEST command for three purposes, re-authentication of clients and 
key-exchange for security, re-negotiation of device options (if permitted), and as a form 
of “keep-alive”. Through this method, servers not only poll the client’s status, but also 
check its identity. Furthermore, if HyperSCSI encryption options are turned on for data 
transmission, the HCC_ADN_REQUEST and HCC_ADN_REPLY uses an authenticated 
exchange mechanism to update and change encryption keys. This scheme also allows a 
device’s options to be modified dynamically. For example, a device which does not have 
encryption enabled may turn it on during this time so that the communication will be 
secured from this point onwards. To enable such remote management functions, an 
encrypted Management Command Stream is used to transfer management commands 
from a client to a server or vice-versa. This MCS also allows adding or removing clients, 
requesting the change of device options, changing access passwords and device access 
permissions. The MCS is implemented within a valid HyperSCSI connection, thus only 
authenticated HyperSCSI clients and servers can use this in-band management 
mechanism. 
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5.5. Connection Termination 
The HyperSCSI client can close a connection by sending an HCC_DISCONNECT 
command to the HyperSCSI server. The server will then remove this client from its 
connection list and close the connection. Servers do not need to acknowledge disconnect 
requests from clients because SCSI connections are host-target based. Unlike TCP/IP 
connections, which are full-duplex and can be closed by both clients and servers, SCSI 
connections can only be terminated (gracefully) by clients. If a server were to terminate a 
connection, it implies that service has been lost (or a hard disk has crashed). Servers do 
not keep connection information forever, and will drop relevant connections if “keep-
alives” (as outlined in section 5.4) to a particular client should fail for some reason. 
Through the use of hashing, encryption and security methods (see section 6.3), 
connections are protected from denial of service attacks from hackers arbitrarily using the 
HCC_DISCONNECT command. 
 
6. Feature Comparison 
 
There are many points to consider when making comparisons of HyperSCSI features to 
other technologies. In the area for security for example, HyperSCSI makes use of 
sequence numbers, hashing, SCSI command identifiers, digital keys and other 
mechanisms to secure a connection, similar in some areas to IP and SCSI. A point to note 
has been that where possible, we have tried to adapt good ideas and mechanisms from 
other technologies for use in HyperSCSI. A good reference is the six manipulation 
functions used in any data transport protocol [8]. Thus, while differences exist, 
similarities will definitely show up as well in any comparison with HyperSCSI. Presented 
in Figure 3 are some ideas for consideration. 
 
 
 
 
 
 
 
 
 
 

Figure 3: Protocol Stack Comparison 
 
6.1. Storage Device Management 
As it turns out, this is a key aspect of network storage that is often neglected. Proprietary 
enterprise management software or dedicated SAN management software from vendors 
or switch manufacturers is often required to properly manage the storage devices. Fibre 
Channel devices, switches and arrays often have an additional Ethernet port and IP 
address for access from the management software. HyperSCSI provides an in-band 
management mechanism that allows properly authenticated (and permitted) clients and 
servers to manage each other’s settings and properties. Some device and management 
options can even be modified and updated dynamically during a connection. 

SCSI Protocol

Parallel Bus FCP iSCSI 

HS / eth 

HyperSCSI 

TCP / IP HS / IP Fibre Channel
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6.2. Device Discovery Mechanisms 
To identify and locate storage devices, Fibre Channel has World Wide Name (WWN) 
while iSCSI/FCIP/iFCP use iSNS. Such mechanisms are complex and add another 
hindrance to achieving ease of use and even plug-and-play networking. For this purpose, 
HS/eth uses standard a broadcast device discovery mechanism to dynamically locate 
targets on the network. If a server is configured to allow a particular client to attach, it 
will respond appropriately, else the discovery request is ignored. Thus the only 
configuration users have to be concerned about is granting permissions, rather than 
setting up complex name servers of some type. This is particularly useful in a plug-and-
play wireless personal storage network environment. HS/IP on the other hand, leverage 
standard DNS mechanisms to “locate” a server across the network. We do not endorse 
the idea of “broadcast / multicast to find out who’s out there on the Internet” as a means 
to locating storage resources. Storage being a key and critical resource should be 
managed as securely as possible, especially if it is on a public or private IP-based 
network. If protocols can be routed, physical security of the storage network is less 
assured. As such, administrators should know before hand the IP or DNS address of the 
client and server, configure them accordingly and not have such information 
“discovered” for security reasons. This also means that there is no single point of failure 
like having iSNS servers or requiring expensive switches with additional intelligence 
built-in. HyperSCSI clients will then attempt to connect to the server address given to it, 
and no other. The only configuration that users need to worry about in the end is granting 
permissions. 
 
6.3. Security 
All three TCP/IP based encapsulation methods iSCSI, iFCP and FCIP provides for and 
requires the use of IPsec for securing the TCP/IP connection. Certainly, this is a step 
forward when considering that Fibre Channel’s main security mechanism is LUN 
masking which is implemented mostly on the switch. However, using IPsec implies 
securing the entire connection. This is different from the more flexible LUN masking 
method that FC uses to allow the user to secure individual LUNs as the case may be. 
HyperSCSI thus supports security options to be specified by individual devices (or 
LUNs) instead of at the connection level. Of course, iSCSI for example, only supports 
one LUN per connection, while HyperSCSI can have multiple devices in a single 
connection, as outlined in section 6.4. It should also be noted that like Fibre Channel, 
HS/eth (which does not use IP at all and is not routable) would require physical access to 
the network in order to hack it. HyperSCSI also allows for security to be modularised into 
different levels of requirements such as hashing, encryption or none at all, thereby giving 
even more options to secure (or not) the device and/or the connection. 
 
6.4. Multiple Device Access 
iSCSI uses one or more TCP connections to make up a single session and requires that 
across all connections within a session, an initiator sees only one “target image”. All 
target identifying elements, like LUNs, are the same [9]. While this makes sense in a pure 
SCSI environment, where a single host bus adapter would see a single target to have one 
“target image”, this may not be true in a network storage environment where usually disk 
arrays of one or more targets may be “exported” to the initiator. HyperSCSI on the other 
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hand allows a single connection to have access to as many SCSI devices (or LUNs) as 
supported by both the initiator and target. This single connection can then be established 
as a virtual channel over multiple physical links to form a redundant trunk. Devices that 
may require multiple LUN access includes optical jukeboxes and tape libraries. 
 
6.5. Optimising Performance 
One of the most controversial aspects of performance for network storage are the 
overheads of TCP/IP. Industry analysts have noted that the TCP/IP stack is very CPU 
intensive and without complex optimisation techniques like hardware accelerators, 
interrupt coalescing, checksum offloading, and so on [10], the only practical application 
for iSCSI is to extend current Fibre Channel SAN-to-LAN connectivity into the realm of 
SAN-to-MAN/WAN connectivity [11]. If every implementation were to require TCP/IP 
implemented in hardware, it would be no different than requiring all devices to have 
Fibre Channel hardware built-in. HyperSCSI can bypass TCP/IP entirely to build a 
storage network similar to (and capable of replacing) Fibre Channel architectures, but 
using plain old Ethernet instead. For wide area implementations, HyperSCSI does in fact 
also support the use of IP-based infrastructure for building Storage Wide-Area Networks 
through HS/IP, a strategy which is no different from Fibre Channel. It should also be 
noted that while HS/eth reduces overheads partly by eliminating certain checksums (ie. 
header checksum), IPv6 also does away with the header checksum. IPv6 designers felt 
that the risk was acceptable given that data link and transport layers check for errors [12]. 
Another key point of HyperSCSI is its reliance on state tables so that information about a 
connection does not have to be retransmitted over and over again. Such information 
includes SCSI host/target information, device options and HyperSCSI sequence numbers. 
This is also similar in idea to STP’s architecture of setting up the receiving buffer and 
related information before transmitting data [13]. This is also a security benefit since the 
capture of a single packet is unlikely to reveal much information about the connection 
itself. For HS/IP, only one IP port is required, since each client can access multiple 
devices through a single connection, unlike iSCSI (see section 6.4). 
 
6.6. Flow Control Issues 
Fibre Channel is often touted as the best solution for network storage due to its high 
speed packetised but dedicated channel for storage. iSCSI on the other hand relies upon 
TCP/IP for flow control and packet transmission and can leverage TCP/IP’s sliding 
windows as a counter to the idea of packetisation being less efficient compared to 
dedicated channels. To provide the best of both worlds, HyperSCSI adopts a moving 
window mechanism but makes the window size dynamic. A balance is provided in that 
the window size does not fluctuate like TCP/IP’s sliding windows, but can and does 
change dynamically in the middle of a connection. Since this window size is dynamically 
controlled by clients and servers, algorithms for determining the window size can be 
adopted to find the optimal window size during run-time, thus adapting to network 
congestion. This is particularly evident in HS/eth implementations. HS/IP of course 
leverages standard IP-based methods for flow-control issues. In addition, retransmission 
can be implemented either using a selected retransmission scheme or a simpler window 
retransmit scheme. This can be decided based on the implementation environment, thus 
giving users a wide degree of flexibility and performance tuning options. 
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6.7. Simplicity, Interoperability and Diversity 
HyperSCSI is designed from the ground up to be simpler for users to implement and yet 
capable of achieving interoperability without sacrificing diversity. For this purpose, 
negotiable device options allow for vendor-specific or implementation-specific features 
to be supported. If different vendor devices with different supported device options were 
to try to connect to each other, the worst case is expected to be a basic connection with no 
additional features or functions. When used in conjunction with the varied SCSI-3 
command set and the Management Command Stream, this becomes quite a powerful 
value-added option for vendors and users alike. 
 
7. Development Progress 
 
We have implemented and tested HyperSCSI under various conditions over Fast Ethernet 
and Gigabit Ethernet. The results so far have proven to be most encouraging. Today, 
HyperSCSI on Gigabit Ethernet achieves a quick 96% of the local physical disk 
performance compared to iSCSI’s 82% for block level access. The results are even better 
when considering file system level tests. Using a straightforward file copy test, 
HyperSCSI can reach 88% of the local physical disk performance, iSCSI managed 43% 
while NFS only succeeded to match 39%. Not only that, it can be seen that HyperSCSI 
provides a more reliable and predictable performance level similar to that of the local 
physical disk than iSCSI or NFS and is less dependent on caching to achieve 
performance. One might wonder why iSCSI performance is not as good as expected. 
Seeing how iSCSI performance seems to closely track NFS performance, we hypothesise 
that the TCP/IP overhead is the differentiating factor between iSCSI and HyperSCSI 
performance. The following charts highlight some of the performance measurements that 
we have conducted. 
 
The results illustrated in Figure 4 represent results from five different tests, two of which 
were raw block level reads (hdparm and dd) and the other three represent data access 
above the file system level. These tests were done on the same hardware and the same OS 
for all three technologies and both the client and server. We used two AMD Athlon 
1.2GHz SMP machines with 32-bit 33MHz PCI busses, 266MHz 256MB DDR RAM 
running RedHat Linux 7.1 using the standard Linux kernel version 2.4.16, one of which 
was the client and the other was the server. Both machines had 3Com 3C985B-SX 
Gigabit Ethernet NICs, connected over a cross connect fibre-optic cable with jumbo 
frames, and the server used an Adaptec 39160 U160 SCSI controller. The server exported 
8 IBM UltraStar U160 9.1GB 10k RPM drives configured in RAID 0. For the tests using 
a file system, Linux Ext2 was used as the file system. We used NFS version 2 over UDP 
from the RedHat Linux RPM version 0.3.1-5. The iSCSI version we used was version 6 
from Intel, while the HyperSCSI version was 110-011226. The destination for the cp test 
was /dev/null while the Iozone version used was 3.71. We would like to draw attention, 
not to the absolute numbers of MB/s, but rather to the performance comparisons between 
iSCSI, NFS and HyperSCSI. 
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Figure 4: HyperSCSI Block and File Access Performance Comparison 
 
Feature-wise, the HyperSCSI reference implementation already supports standard SCSI 
hard drives, IDE hard drives, software RAID / virtualised drives, optical disks (like 
DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI tape drives (like 
HP DAT40).  We have even successfully used HyperSCSI is to write CDs remotely over 
our own live corporate LAN. File systems like Microsoft’s FAT16/FAT32, SGI’s XFS, 
IBM’s JFS and Linux Ext2/Ext3 have all been successfully tested on HyperSCSI drives. 
HyperSCSI clients and servers have been successfully implemented on Linux, while 
client versions on Windows 2000 and Solaris 8 is currently in development. Encryption 
schemes that have already been implemented include 64-bit Blowfish and 128-bit 
Rijndael. HyperSCSI has been assigned its own IEEE Ethertype Number, and will soon 
receive a registered IP port for HS/IP implementations. 
 
Areas that are currently under development (at the time of writing of this document) 
include aspects of the Management Command Stream, the Transmission Pause / Resume, 
various hashing and security related options, HS/IP implementation and Windows 2000 
and Solaris 8 versions of the Linux client. With continued optimisations and bug-fixes of 
the reference implementation, we expect raw block data read speeds for a RAID0 
subsystem of 8 drives on normal frame Gigabit Ethernet to exceed 100MB/s in early 
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2002. Another effort underway is the testing of several N-channel communications 
schemes for HyperSCSI. A Peer Round-Robin scheme is likely to be used in the final 
implementation. The documentation of HyperSCSI specifications is also critical in order 
to allow other organisations to adapt and build their own HyperSCSI solutions. Currently 
there are three documents in the HyperSCSI specifications, HyperSCSI Protocol 
Specifications, HyperSCSI Security Specifications and HyperSCSI Management 
Command Stream Specifications. A Quick Reference Manual, Reference Implementation 
Source Code Documentation, and various introductory documents like this one will also 
be provided. These documents will be available on our website when completed. 
 
8. HyperSCSI Applications and Conclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: HyperSCSI in Action 
 
We believe that HyperSCSI provides an opportunity to address various concerns and 
open up new possibilities for network storage. The Local HS/eth protocol allows the 
construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP 
permits mobile devices like laptops to access the corporate SAN directly (bypassing 
servers if need be). Storage devices can support SAN or NAS or both access methods 
simultaneously through the use of a single network interface. Home devices will also be 
able to access storage directly with simple plug-and-play methods over Fast Ethernet or 
Wireless LAN using HyperSCSI’s device discovery schemes. HyperSCSI has also been 
designed with the future in mind. It supports more than 32,000 different device options 
that will allow vendors to introduce a wide variety of vendor-specific capabilities and 
technologies, without sacrificing interoperability. The protocol also allows each single 
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HyperSCSI connection to handle 64 simultaneous in-transit SCSI commands, each with 
SCSI command block sizes up to 512KB. These SCSI command block sizes can be 
further increased six-fold by using Gigabit Ethernet jumbo frames, thus providing an 
even higher level of performance.  
 
In conclusion, we believe that HyperSCSI is a relatively simple technology that can 
provide users with performance, security, scalability and flexibility, thus making it a 
viable alternative solution for network storage applications. 
 
For more information on HyperSCSI, please visit our website at 
http://nst.dsi.nus.edu.sg/mcsa/  
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